Integration of Genetic Programming and Reinforcement Learning for Real Robots
نویسندگان
چکیده
We propose an integrated technique of genetic programming (GP) and reinforcement learning (RL) that allows a real robot to execute real-time learning. Our technique does not need a precise simulator because learning is done with a real robot. Moreover, our technique makes it possible to learn optimal actions in real robots. We show the result of an experiment with a real robot AIBO and represents the result which proves proposed technique performs better than traditional Q-learning method.
منابع مشابه
Using BELBIC based optimal controller for omni-directional threewheel robots model identified by LOLIMOT
In this paper, an intelligent controller is applied to control omni-directional robots motion. First, the dynamics of the three wheel robots, as a nonlinear plant with considerable uncertainties, is identified using an efficient algorithm of training, named LoLiMoT. Then, an intelligent controller based on brain emotional learning algorithm is applied to the identified model. This emotional l...
متن کاملHardware Solutions for Evolutionary Robotics
Evolutionary robotics| as other adaptive methods, such as reinforcement learning and learning classi er systems|can take considerable time and resources which require a careful evaluation of the hardware tools and methodologies employed. We outline a set of hardware solutions and working methodologies that can be used for successfully implementing and extending the evolutionary approach to comp...
متن کاملArtificial Consciousness for Improving Reinforcement Learning
Reinforcement learning methods are useful for robot learning, but become slow when robots possess many degrees of freedom. We suggest equipping robots with fast on-board simulators, in order to accelerate learning. Such simulators will resemble forms of consciousness, enabling the robots to perform run-time trials in a simulated world, rather than tediously performing them in practice. We have ...
متن کاملAutomatic Programming of Robots Using Genetic Programming
The goal in automatic programming is to get a computer to perform a task by telling it what needs to be done, rather than by explicitly programming it. This paper considers the task of automatically generating a computer program to enable an autonomous mobile robot to perform the task of moving a box from the middle of an irregular shaped room to the wall. We compare the ability of the recently...
متن کاملEvolution of Meta-parameters in Reinforcement Learning
A crucial issue in reinforcement learning applications is how to set meta-parameters, such as the learning rate and ”temperature” for exploration, to match the demands of the task and the environment. In this thesis, a method to adjust meta-parameters of reinforcement learning by using a real-number genetic algorithm is proposed. Simulations of foraging tasks show that appropriate settings of m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003